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APPLYING ONE-DIMENSIONAL DIFFERENTIAL TRANSFORM 

METHOD TO PARTIAL DIFFERENTIAL EQUATIONS  

Hnin Ei Phyu1 

Abstract 

In this paper, definitions of one-dimensional differential transform (reduced differential transform) 

and inverse differential transform are described. And then, properties of one-dimensional 

differential transform are expressed. After that, one-dimensional differential transform is utilized 

to solve the initial value problems for linear one-dimensional partial differential equations with 

constant coefficients and variable coefficients. Finally, one-dimensional differential transform is 

applied to solve the initial value problems for two-dimensional second-order partial differential 

equations.    
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Introduction 

 This paper is a continuation of our previous work [Hnin and Khin, 2023]. In [Hnin and 

Khin, 2023], the one-dimensional differential transform method was used for solving initial value 

problems for ordinary differential equations with constant coefficients and variable coefficients. 

Differential transform method can be used for solving initial value problems for differential 

equations and integral equations. In this paper, we are interested in solving one-dimensional and 

two-dimensional second-order partial differential equations by using a one-dimensional 

differential transform method. 

 The rest of this paper is organized as follows: In Section 2, basic concepts of one-

dimensional differential transforms are recalled. The main results are demonstrated in Section 3 

and Section 4 respectively by solving the initial value problems for one-dimensional partial 

differential equations and two-dimensional partial differential equations using one-dimensional 

differential transform method. 

Preliminaries 

 In this section, the definitions of one-dimensional differential transform and its properties 

are described. 

Definition 1[Raslan, Biswas and Abu Sheer, 2012] 

 If  u(x, t)  is analytic and differentiable continuously in the domain of interest, then let 

                    

0

k

k k

t t

1
U (x) u(x, t) ,

k! t


 
  

 
                                  (1) 

where the spectrum kU (x)  is the transformed function, which is called T-function. 

Definition 2 [Raslan, Biswas and Abu Sheer, 2012] 

 Differential inverse transform of kU (x)  is defined as follows: 

           
k

k 0

k 0

u(x, t) U (x) (t t ) .




                          (2) 

 Substitution (1) into (2), we obtain 
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0

k
k

0k
k 0 t t

1 u(x, t)
u(x, t) (t t ) .

k! t



 

 
  

 
                                   (3) 

 When 0(t )  are taken as 0(t 0) , then (3) is expressed as 

   

0

k
k

k
k 0 t t

1 u(x, t)
u(x, t) t ,

k! t



 

 
  

 
  

and (1) is shown as 

 
k

k

k 0

u(x, t) U (x) t .




                            (4) 

 In real application, the function u(x, t)  by a finite series of (4) can be written as 

   
n

k

k

k 0

u(x, t) U (x) t ,


                           (5) 

usually, the value of n  is decided by convergence of the series coefficients. 

 

Some Properties of One-Dimensional Differential Transform  

Theorem 1 [Khatib, (2016)]  

  If z(x, t) u(x, t) v(x, t),   the differential transform of z(x, t)  be kZ (x),  then 

k k kZ (x) U (x) V (x),    where   and   are constants. 

Proof: Let z(x, t) u(x, t) v(x, t).   Then,  

 
k

k k

t 0

1
Z (x) z(x, t)

k! t


 
  

 
 

            
k

k

t 0

1
( u(x, t) v(x, t))

k! t


 
   

 
 

            
k k

k k

t 0

1
( u(x, t)) ( v(x, t))

k! t t


  
    

  
 

            
k k

k k

t 0 t 0

u(x, t) v(x, t)
k! t k! t

 

      
    

    
 

            k kU (x) V (x).             

 Therefore, k k kZ (x) U (x) V (x).     

Theorem 2 [Khatib, (2016)] 

 If z(x, t) u(x, t),
x





 and the differential transform of z(x, t)  be kZ (x),   then 

k kZ (x) U (x).
x




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Proof: Let z(x, t) u(x, t).
x





 Then, we have 

 
k

k k

t 0

1
Z (x) z(x, t)

k! t


 
  

 
 

           
k

k

t 0

1
( u(x, t))

k! t x


  
  

  
 

           
k

k

t 0

1
u(x, t)

x k! t


   
      

 

            kU (x).
x





 

 Therefore, k kZ (x) U (x).
x





  

Theorem 3 [Khatib, (2016)] 

 If 
2

2
z(x, t) u(x, t),

x





 and the differential transform of z(x, t)  be kZ (x),  then 

2

k k2
Z (x) U (x).

x





  

Proof: Let 
2

2
z(x, t) u(x, t).

x





 Then, we have 

 
k

k k

t 0

1
Z (x) z(x, t)

k! t


 
  

 
 

           
k 2

k 2

t 0

1
( u(x, t))

k! t x


  
  

  
 

           
2 k

2 k

t 0

1
u(x, t)

x k! t


   
      

 

            
2

k2
U (x).

x





 

 Therefore, 
2

k k2
Z (x) U (x).

x





  

Theorem 4 [Khatib, (2016)]   

            If 
m

m
z(x, t) u(x, t),

t





and the differential transform of z(x, t)  be kZ (x),  then 

k k m

(k m)!
Z (x) U (x).

k!



                     

Proof: Let 
m

m
z(x, t) u(x, t).

t





 Then, we have 
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k

k k

t 0

1
Z (x) z(x, t)

k! t


 
  

 
 

           
k m

k m

t 0

1
u(x, t)

k! t t


   
      

  

           
k m

k m

t 0

(k m)!
u(x, t)

k!(k m)! t







  
  

  
  

             k m

(k m)!
U (x).

k!



  

 Therefore, k k m

(k m)!
Z (x) U (x).

k!



   

Theorem 5 (Leibniz’s theorem) 

 If y uv,  where u  and v  are any functions of x,  then  

n n n

n n 1 n 1 1 2 n 2 2 r n r r ny u v C u v C u v ... C u v ... uv ,          where, suffixes of u  and v  denote 

the number of times they are differentiated. 

Proof: [See, Kishan, 2007].   

Theorem 6 [Khatib, (2016)] 

            If z(x, t) u(x, t)v(x, t) , and the differential transform of z(x, t)  be kZ (x),  then 

k

k r k r

r 0

Z (x) U (x)V (x).



  

Proof: Let z(x, t) u(x, t)v(x, t).  Then, 

k

k k

t 0

1
Z (x) z(x, t)

k! t


 
  

 
 

          
k

k

t 0

1
(u(x, t) v(x, t)) .

k! t


 
  

 
 

Now, Leibnitz’s theorem for partial derivatives of function of several variables 

   
k r k rk

k r k r
r 0

k
(u(x, t) v(x, t)) u(x, t) v(x, t).

rt t t






   
     
  

Then, we get 

r k rk

k r k r
r 0 t 0 t 0

k1
Z (x) u(x, t) v(x, t)

rk! t t




  

    
        

      

          
r k rk

r k r
r 0 t 0 t 0

1
u(x, t) v(x, t)

r!(k r)! t t




  

  
  

    
  

           
k

r k r

r 0

U (x) V (x).



  
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  Therefore, 
k

k r k r

r 0

Z (x) U (x)V (x).



    

 

Now we can extend definitions and theorems of differential transform and inverse 

differential transform for solving two-dimensional heat and wave equations. 

Definition 3 

 If  u(x, y, t)  is analytic and differentiable continuously in the domain of interest, then let 

                    

0

k

k k

t t

1
U (x, y) u(x, y, t) ,

k! t


 
  

 
                      (6) 

where the spectrum kU (x, y)  is the transformed function, which is called T-function. 

Definition 4 

 Differential inverse transform of kU (x, y)  is defined as follows: 

           
k

k 0

k 0

u(x, y, t) U (x, y) (t t ) .




                          (7) 

 Substitution (6) into (7), we obtain 

    

0

k
k

0k
k 0 t t

1 u(x, y, t)
u(x, y, t) (t t ) .

k! t



 

 
  

 
                                   (8) 

 When 0(t )  are taken as 0(t 0) , then (8) is expressed as 

   

0

k
k

k
k 0 t t

1 u(x, y, t)
u(x, y, t) t ,

k! t



 

 
  

 
  

and (6) is shown as 

 
k

k

k 0

u(x, y, t) U (x, y) t .




                          (9) 

 In real application, the function u(x, y, t)  by a finite series of (9) can be written as 

   
n

k

k

k 0

u(x, y, t) U (x, y) t ,


                       (10) 

usually, the value of n  is decided by convergence of the series coefficients. 

Theorem 7  

  If z(x, y, t) u(x, y, t) v(x, y, t),   then k k kZ (x, y) U (x, y) V (x, y),    where   

and   are constants. 

Proof: Let z(x, y, t) u(x, y, t) v(x, y, t)   and the differential transform of z(x, y, t)  be 

kZ (x, y).  Then,  
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k

k k

t 0

1
Z (x, y) z(x, y, t)

k! t


 
  

 
 

               
k

k

t 0

1
( u(x, y, t) v(x, y, t))

k! t


 
   

 
 

               
k k

k k

t 0

1
( u(x, y, t)) ( v(x, y, t))

k! t t


  
    

  
 

               
k k

k k

t 0 t 0

u(x, y, t) v(x, y, t)
k! t k! t

 

      
    

    
 

               k kU (x, y) V (x, y).           

 Therefore, k k kZ (x, y) U (x, y) V (x, y).     

Theorem 8  

 If z(x, y, t) u(x, y, t),
x





 then k kZ (x, y) U (x, y).
x





  

Proof: Let z(x, y, t) u(x, y, t),
x





 and the differential transform of z(x, y, t)  be kZ (x, y).  Then,  

 
k

k k

t 0

1
Z (x, y) z(x, y, t)

k! t


 
  

 
 

               
k

k

t 0

1
( u(x, y, t))

k! t x


  
  

  
 

               
k

k

t 0

1
u(x, y, t)

x k! t


   
      

kU (x, y).
x





 

                 Therefore, k kZ (x, y) U (x, y).
x





  

Theorem 9  

 If z(x, y, t) u(x, y, t),
y





 then 
k kZ (x, y) U (x, y).

y





  

Proof: Let z(x, y, t) u(x, y, t),
y





 and the differential transform of z(x, y, t)  be kZ (x, y).  Then,  

 
k

k k

t 0

1
Z (x, y) z(x, y, t)

k! t


 
  

 
 

               
k

k

t 0

1
( u(x, y, t))

k! t y


  
  

  
 

               
k

k

t 0

1
u(x, y, t)

y k! t


   
      

 

                 
kU (x, y).

y




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Therefore, 
k kZ (x, y) U (x, y).

y





 

Theorem 10 

 If 
2

2
z(x, y, t) u(x, y, t),

x





 then 
2

k k2
Z (x, y) U (x, y).

x





  

Proof: Let 
2

2
z(x, y, t) u(x, y, t),

x





 and the differential transform of z(x, y, t)  be kZ (x, y).  

Then,  

 
k

k k

t 0

1
Z (x, y) z(x, y, t)

k! t


 
  

 
 

               
k 2

k 2

t 0

1
( u(x, y, t))

k! t x


  
  

  
 

               
2 k

2 k

t 0

1
u(x, y, t)

x k! t


   
      

 

                
2

k2
U (x, y).

x





 

 Therefore, 
2

k k2
Z (x, y) U (x, y).

x





  

Theorem 11 

 If 
2

2
z(x, y, t) u(x, y, t),

y





 then 
2

k k2
Z (x, y) U (x, y).

y





  

Proof: Let 
2

2
z(x, y, t) u(x, y, t),

y





 and the differential transform of z(x, y, t)  be kZ (x, y).  

Then,  

 
k

k k

t 0

1
Z (x, y) z(x, y, t)

k! t


 
  

 
 

    
k 2

k 2

t 0

1
( u(x, y, t))

k! t y


  
  

  
 

               
2 k

2 k

t 0

1
u(x, y, t)

y k! t


   
      

 

                
2

k2
U (x, y).

y





 

 Therefore, 
2

k k2
Z (x, y) U (x, y).

y



  
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Theorem 12  

            If 
m

m
z(x, y, t) u(x, y, t)

t



  

, then k k m

(k m)!
Z (x, y) U (x, y).

k!



                     

Proof: Let 
m

m
z(x, y, t) u(x, y, t)

t





 and the differential transform of z(x, y, t)  be kZ (x, y).  

Then, 

 
k

k k

t 0

1
Z (x, y) z(x, y, t)

k! t


 
  

 
 

               
k m

k m

t 0

1
u(x, y, t)

k! t t


   
      

 

               
k m

k m

t 0

(k m)!
u(x, y, t)

k!(k m)! t







  
  

  
  

                  k m

(k m)!
U (x, y).

k!



  

 Therefore, k k m

(k m)!
Z (x, y) U (x, y).

k!



   

Theorem 13  

            If z(x, y, t) u(x, y, t)v(x, y, t) , then 
k

k r k r

r 0

Z (x, y) U (x, y)V (x, y).



  

Proof: Let z(x, y, t) u(x, y, t)v(x, y, t)  and the differential transform of z(x, y, t)  be kZ (x, y).  

Then, we have 

k

k k

t 0

1
Z (x, y) z(x, y, t)

k! t


 
  

 
 

              
k

k

t 0

1
(u(x, y, t) v(x, y, t)) .

k! t


 
  

 
 

Now, Leibnitz’s theorem for partial derivatives of function of several variables 

   
k r k rk

k r k r
r 0

k
(u(x, y, t) v(x, y, t)) u(x, y, t) v(x, y, t).

rt t t






   
     
  

Then, we get 

r k rk

k r k r
r 0 t 0 t 0

k1
Z (x, y) u(x, y, t) v(x, y, t)

rk! t t




  

    
        

      

              
r k rk

r k r
r 0 t 0 t 0

1
u(x, y, t) v(x, y, t)

r!(k r)! t t




  

  
  

    
  

               
k

r k r

r 0

U (x, y) V (x, y).



  



J. Myanmar Acad. Arts Sci. 2023 Vol. XXII. No.2  217 

   Therefore, 
k

k r k r

r 0

Z (x, y) U (x, y)V (x, y).



    

Solving Initial Value Problems for One-Dimensional Partial Differential Equations 

In this section, initial value problems for one-dimensional heat equations and wave 

equations are solved by using one-dimensional differential transform method. 

Example 1 

 We consider the one-dimensional heat equation with variable coefficients as  

2

t xx

x
u (x, t) u (x, t) 0,

2
                        (11) 

and the initial condition 

    2u(x,0) x ,                       (12) 

where u u(x, t)  is a function of the variables x  and t.   

Taking differential transform of (11), 

  
2 2

k 1 k2

x
(k 1) U (x) U (x),

2 x



  


                                                      (13) 

using the initial condition (12), 

   2

0U (x) x .                         (14) 

 Substitution (14) into (13) and using the recurrence relation, 

2 2
2

1 2 3

x x
U (x) x , U (x) , U (x) ,

2 6
       

2 2

4 5

x x
U (x) , U (x) ,

24 120
    

2

6

x
U (x) , ,

720
    

2

k 2

x
, k iseven,

k!
U (x)

x
, k isodd.

k!




 



 

 Finally, the differential inverse transform of kU (x)  gives: 
k

k

k 0

u(x, t) U (x) t .




  

 Then, the exact solution is 

   2 tu(x, t) x e .  

Example 2 

 We consider the one-dimensional heat equation with variable coefficients as 

   
2

t xx x

x
u (x, t) u (x, t) 2u (x, t) 0,

2
                         (15) 

and the initial condition 
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   2u(x,0) x ,                          (16) 

where u u(x, t)  is a function of the variables x  and t.   

Taking differential transform of (15), 

   
2 2

k 1 k k2

x
(k 1) U (x) U (x) 2 U (x),

2 x x


 
  

 
                               (17) 

using the initial condition (16), 

   2

0U (x) x .                          (18) 

 Substitution (18) into (17) and using the recurrence relation, 

2 2 2
2

1 2 3 4

x 4x 8 x 4x 8 x 4x 8
U (x) x 4x, U (x) , U (x) , U (x) ,

2 6 24

     
      

2 2 2

5 6 k

x 4x 8 x 4x 8 x 4x 8
U (x) , U (x) , , U (x) .

120 720 k!

     
    

 Finally, the differential inverse transform of kU (x)  gives: 

   
k

k 2

k

k 0 k 0

t
u(x, t) U (x) t (x 4x 8) .

k!

 

 

      

 Then, the exact solution is 

   2 tu(x, t) (x 4x 8)e .    

Example 3 

 We consider the linear Klein-Gordon equation in the form 

   tt xxu (x, t) u (x, t) u(x, t) 0,                                     (19) 

and the initial conditions 

   tu(x,0) 1 cos x,u (x,0) 0,                        (20) 

where u u(x, t)  is a function of the variables x  and t.   

Taking differential transform of (19), 

2

k 2 k k2
(k 1)(k 2)U (x) U (x) U (x),

x



   


                                          (21) 

using the initial condition (20), 

  0 1U (x) 1 cos x, U (x) 0.                                                (22) 

 Substitution (22) into (21) and using the recurrence relation, 

  kU (x) 0, k 1,3,5, .   

 By applying the k  values are k 2,4,6, ,  



J. Myanmar Acad. Arts Sci. 2023 Vol. XXII. No.2  219 

2 4 6 k

1 1 1 1
U (x) , U (x) , U (x) , , U (x) .

2 24 720 k!
     

 Finally, the differential inverse transform of kU (x)  gives: 

  
2 4 6

k

k

k 0

t t t
u(x, t) U (x) t (1 cos x) ( ).

2! 4! 6!





         

 Then, the exact solution is u(x, t) cosx cosh t.    

Example 4 

 We consider the one-dimensional wave equation with variable coefficients as 

  
2

tt xx

x
u (x, t) u (x, t) 0,

2
                                          (23) 

and the initial conditions 

  2

tu(x,0) x,u (x,0) x ,                                         (24) 

where u u(x, t)  is a function of the variables x  and t.  

 Taking differential transform of (23), 

  
2 2

k 2 k2

x
(k 1)(k 2) U (x) U (x),

2 x



   


                               (25) 

using the initial condition (24), 

  2

0 1U (x) x, U (x) x .                     (26) 

 Substitution (26) into (25) and using the recurrence relation, 

  kU (x) 0, k 2,4,6, .   

 By applying the k  values are k 1,3,5, ,  

2 2 2

3 5 7

x x x
U (x) , U (x) , U (x) , ,

6 120 5040
        

2
k

k 2
k 1

x
( 1) , k 3,7,11, ,

k!
U (x)

x
( 1) , k 5,9,13, .

k!




 

 
  


   

 Finally, the differential inverse transform of kU (x)  gives: 

  
3 5 7 k

k 2

k

k 0

t t t t
u(x, t) U (x) t x x t .

3! 5! 7! k!





 
         
  

 Then, the exact solution is 

 



220 J. Myanmar Acad. Arts Sci. 2023 Vol. XXII. No.2 

   2u(x, t) x x sin t.   

Example 5 

 We consider the one-dimensional wave equation with variable coefficients as 

  
2

tt xx x

x
u (x, t) u (x, t) u (x, t) 0,

2
                         (27) 

and the initial conditions 

  2

tu(x,0) 1,u (x,0) x ,                                   (28) 

where u u(x, t)  is a function of the variables x  and t.  

 Taking differential transform of (27), 

  
2 2

k 2 k k2

x
(k 1)(k 2) U (x) U (x) U (x),

2 x x


 
   

 
                      (29) 

using the initial condition (28),  

  2

0 1U (x) 1, U (x) x .                            (30) 

 Substitution (30) into (29) and using the recurrence relation, 

  kU (x) 0, k 2,4,6, .   

 By applying the k  values are k 1,3,5, ,  

         
2 2 2

3 5 7

x 2x x 2x 2 x 2x 2
U (x) , U (x) , U (x) , ,

6 120 5040

    
    

 
2

k

x 2x 2
U (x) .

k!

 
  

 Finally, the differential inverse transform of kU (x)  gives: 

  
3 5 7 k

k 2

k

k 0

t t t t
u(x, t) U (x) t 1 (x 2x 2) t .

3! 5! 7! k!





 
           
  

 Then, the exact solution is 

   2u(x, t) 1 (x 2x 2)sinh t.     

 

Solving Initial Value Problems for Two-Dimensional Partial Differential Equations 

 In this section, initial value problems for two-dimensional heat equations and wave 

equations are solved by using one-dimensional differential transform method.  
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Example 6 

 We consider the two-dimensional heat equation with variable coefficients as 

   
2 2

t xx yy

y x
u (x, y, t) u (x, y, t) u (x, y, t) 0,

2 2
                              (31) 

and the initial condition 

   2u(x, y,0) x ,                        (32) 

where u u(x, t)  is a function of the variables x  and t.   

Taking differential transform of (31), 

2 2 2 2

k 1 k k2 2

y x
(k 1)U (x, y) U (x, y) U (x, y),

2 x 2 y


 
  

 
                    (33) 

using the initial condition (32), 

   2

0U (x, y) x .                         (34) 

 Substitution (34) into (33) and using the recurrence relation,  

 
2 2

2

1 2 3

x y
U (x, y) y , U (x, y) , U (x, y) ,

2 6
  

2

4

x
U (x, y) ,

24
  

2

5

y
U (x, y) ,

120
  

 
2 2

6 7

x y
U (x, y) , U (x, y) , ,

720 5040
 

2

k 2

x
, k is even,

k!
U (x, y)

y
, k is odd.

k!




 



 

 Finally, the differential inverse transform of kU (x, y)  gives: 

  

k k
k 2 2

k

k 0 k 0,2,4 k 1,3,5

t t
u(x, y, t) U (x, y) t x y .

k! k!

  

  

       

 Then, the exact solution is 

  
2 4 3 5

2 2t t t t
u(x, y, t) x (1 ) y (t )

2! 4! 3! 5!
        2 2x cosh t y sinh t.   

Example 7 

 We consider the two-dimensional heat equation with variable coefficients as 

 
2 2

t xx yy x y

y x
u (x, y, t) u (x, y, t) u (x, y, t) u (x, y, t) u (x, y, t) 0,

2 2
                   (35) 

and the initial condition 

   2u(x, y,0) y ,                        (36) 

where u u(x, t)  is a function of the variables x  and t.   

Taking differential transform of (35), 



222 J. Myanmar Acad. Arts Sci. 2023 Vol. XXII. No.2 

2 2 2 2

k 1 k k k k2 2

y x
(k 1)U (x, y) U (x, y) U (x, y) U (x, y) U (x, y),

2 x 2 y x y


   
     

   
      (37) 

using the initial condition (36), 

   2

0U (x, y) y .                         (38) 

 Substitution (38) into (37) and using the recurrence relation,  

 
2 2

2

1 2 3

y 2x 2 x 2y 2
U (x, y) (x 2y), U (x, y) , U (x, y) ( ),

2 6

   
       

 
2 2 2

4 5 6

y 2x 2 x 2y 2 y 2x 2
U (x, y) , U (x) ( ), U (x) , ,

24 120 720

     
     

 

2

k 2

y 2x 2
, k is even,

k!
U (x, y)

(x 2y 2)
, k isodd.

k!

  


 
 



 

 Finally, the differential inverse transform of kU (x, y)  gives: 

  
k k

k 2 2

k

k 0 k 0 k 0

t t
u(x, y, t) U (x, y) t (y 2x 2) (x 2y 2) .

k! k!

  

  

           

 Then, the exact solution is 

  
2 4 3 5

2 2t t t t
u(x, y, t) (y 2x 2)(1 ) (x 2y 2)(t )

2! 4! 3! 5!
             

       2 2(y 2x 2)cosh t (x 2y 2)sinh t.       

Example 8 

 We consider the two-dimensional wave equation with constant coefficients as 

   tt xx yyu (x, y, t) u (x, y, t) u (x, y, t) u(x, y, t) 0,                         (39) 

and the initial conditions 

              tu(x, y,0) 1 cos x,u (x,0) 0,                                              (40) 

where u u(x, t)  is a function of the variables x  and t.   

Taking differential transform of (39), 

2 2

k 2 k k k2 2
(k 1)(k 2)U (x, y) U (x, y) U (x, y) U (x, y),

x y


 
    

 
                      (41) 

using the initial condition (40),  

   0 1U (x, y) 1 cos x, U (x, y) 0.                        (42) 

 Substitution (42) into (41) and using the recurrence relation,  
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   kU (x, y) 0, k 1,3,5, .   

 By applying the k  values are k 2,4,6, ,  

 2 4 6 k

1 1 1 1
U (x, y) , U (x, y) , U (x, y) , , U (x, y) .

2 24 720 k!
     

Finally, the differential inverse transform of kU (x)  gives: 

  
2 4 6

k

k

k 0

t t t
u(x, y, t) U (x, y) t (1 cos x) ( ).

2! 4! 6!





         

 Then, the exact solution is 

   u(x, y, t) cosx cosh t.   

Example 9 

 We consider the two-dimensional wave equation with variable coefficients as 

  
2 2

tt xx yy

x y
u (x, y, t) u (x, y, t) u (x, y, t) 0,

12 12
                       (43) 

and the initial conditions 

   4 4

tu(x, y,0) x , u (x, y,0) y ,                  (44) 

where u u(x, t)  is a function of the variables x  and t.   

Taking differential transform of (43), 

2 2 2 2

k 2 k k2 2

x y
(k 1)(k 2)U (x, y) U (x, y) U (x, y),

12 x 12 y


 
   

 
              (45) 

using the initial condition (44), 

   4 4

0 1U (x, y) x , U (x, y) y .                   (46) 

 Substitution (46) into (45) and using the recurrence relation, 

 
4 4 4

2 3 4

x y x
U (x, y) , U (x, y) , U (x, y) ,

2 6 24
  

4

5

y
U (x, y) ,

120
  

 
4

6

x
U (x, y) , ,

720
   

4

k 4

x
, k is even,

k!
U (x, y)

y
, k is odd.

k!




 



   

 Finally, the differential inverse transform of kU (x, y)  gives: 

  
k 4 k 4 k

k k k

k 0 k 0,2,4 k 1,3,5

u(x, y, t) U (x, y) t x U (x, y) t y U (x, y) t .
  

  

       

 Then, the exact solution is 

  
2 4 3 5

4 4t t t t
u(x, y, t) x (1 ) y (t )

2! 4! 3! 5!
        4 4x cosh t y sinh t .   
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Conclusion 

 In this paper, we have studied one-dimensional and two-dimensional heat and wave 

equations with the help of differential transform method. The differential transform method has 

been successful, applied for solving linear and homogeneous partial differential equations with 

constant coefficients and variable coefficients. We conclude that differential transform method 

can be extended to solve many partial differential equations with constant coefficients and 

variable coefficients which arise in physical and engineering applications. 
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